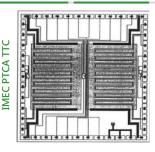
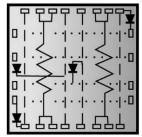
Thermal Test Chip for Thermal Characterization and Qualification of Materials and Semiconductor Packages

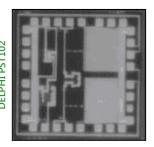
44th Symposium & Exposition

Boxboro Regency Hotel & Conference Center, Boxborough MA USA

Mohamad Abo Ras and Dave Saums
02 May 2017


Outline


- Motivation
- Design of the Thermal Test Chip
- Qualification and Calibration
- Application examples
 - » Material characterization at TIMA™
 - » Material characterization at TransTIMA™
 - » Highly conductive die attach characterization
 - » Load profile generation
 - » Optical reference heat source
 - » Fluidic analysis
- Conclusion & Outlook



Motivation

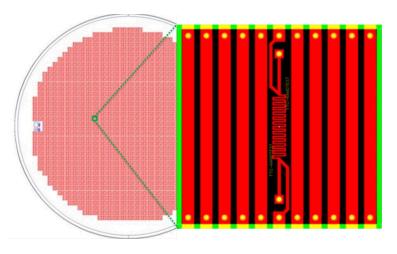
- What is a Thermal Test Chip (TTC)?
 - » Basic chip for testing and characterization
 - » Each consists of:
 - a heat source
 - a temperature sensor
 - contacting pads
- Why did we create an own Thermal Test Chip?
 - » Limited availability and selection of TTCs on the market
 - » Available chips do not fulfill requirements:
 - Low power density
 - Inhomogeneous heat dissipation
 - Low temperature accuracy
 - » TTCs are the mainly used tool for thermal characterization and qualification of materials and packages in electronics
 - » A gap in the market

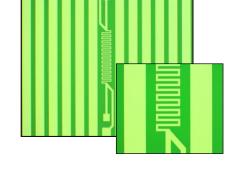
Design » Requirements

- Modularity
 - » Different chip sizes available to meet most requirements
- Homogeneity
 - » Uniform heater structures for homogeneous heat dissipation up to 1 \mbox{W}/\mbox{mm}^{2}
- Resolution
 - » Thermal resolution of temperature sensing up to \pm 0.2 K
 - » Spatial resolution of temperature sensing up to $_{\pm}$ 500 μm
- Reliability
 - » Suitable for long-term load cycle testing to > 100,000 cycles
- Cost-Effectiveness
 - » Suitable as consumable rather than as invest
- Assembly
 - » Available for different assembling technologies
- Metallization
 - » Available with different backside metallization

Design » Layout

- Wafer
 - » Standard 150 mm Si wafer
 - » Thickness
 - Bulk silicon: 675 μm
 - Oxide coating: 1 μm
 - » 1200 chips per wafer

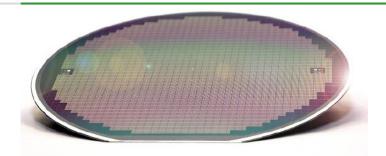



» Use of only 3 masks for the full process:

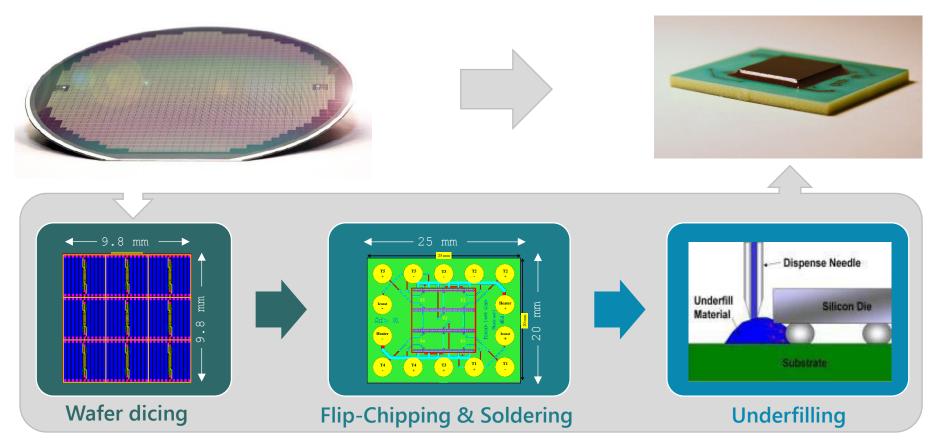
- 1. Mask for lithography of the temperature sensor and heater structures
- 2. Mask to open the vias for contacting the structures
- 3. Mask for the deposition of the contact layer metallization

• The Edge

- » Few masks for the whole process
- » Si wafers in standard size
- » Processing steps with small tolerances
- » Fully modular wafer layout for custom chip sizes



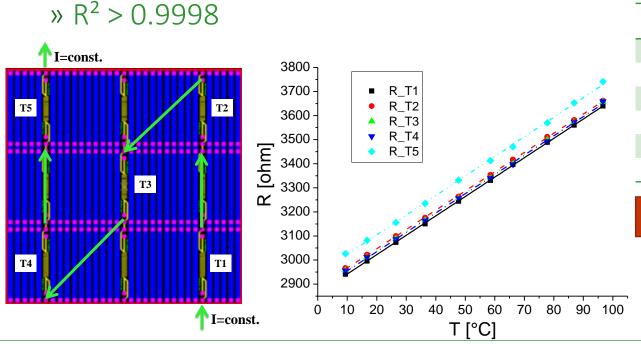
Design » Wafers



Assembling technology	Flip Chip Assembly	Wirebond Assembly
Fabrication technology	Thin film	Thin film
Wafer diameter	150 mm	150 mm
Wafer thickness	675 μm	400 μm
Cell size	3.2 x 3.2 mm ²	3.2 x 3.2 mm ²
Cell count	1200	1200
Heaters per cell	10 resistors (160 Ω each)	10 resistors (160 Ω each)
Sensors per cell	1 resistor (3 k Ω each @ RT)	1 resistor (3 kΩ each @ RT)
Backside metallization	None	Ti/Pt/Au (100 nm each)
Contact pad	Cu pillar (40 μm) & AgSn (30 μm)	Al metallization
Pad size	80 μm	150 μm
Pad raster	300 μm	300 μm

Design » Flip Chip Assembly

- Standard semiconductor process with low defect rate
- Default package for Nanotest applications:
 - » Full-area heater and five temperature sensors
- Highly reliable package that is suited for cycle testing


Temperature Calibration

- Calibration with Nanotest HK200™
- Calibration of 5 sensors simultaneously
- Four-wire termination
 - » 1 mA sensing current

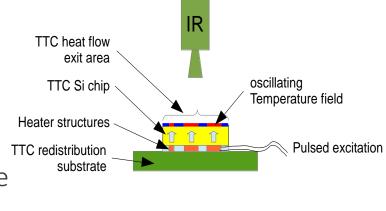
Nanotest HK200™

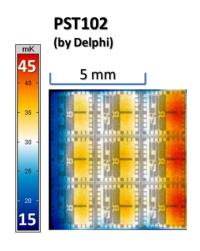
Resistance perfectly proportional to the temperature

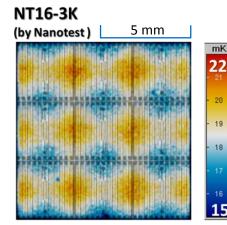
#	Slope [Ω/K]	axis intercept $[\Omega]$
T1	8,049	2861
T2	7,994	2887
Т3	8,013	2878
T4	8,009	2875
T5	8,140	2942
mean	8,041	2889

sensitivity: 8 Ω/K

→ 4X higher sensitivity compared to Si diodes (@ 1 mA)






Temperature Homogeneity

- Homogeneity is of very high importance for TIM characterization:
 - » Inhomogeneous heat flow leads to faulty thermal analysis results
- Use of thermal imaging for transient modulated technique
 - » At steady-state (Q = 0), non-homogeneities are not detectable
- Lock-in thermography amplitude image for quantification of the heat flow distribution

NT16-3K is a <u>4X improvement</u> over earlier test die previously used in thermal characterization.

Applications I » TIMA™ Pt. 1

TIMA™

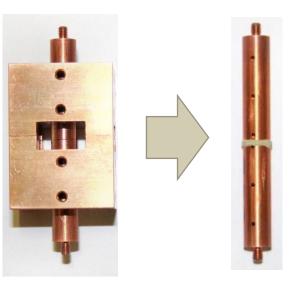
Steady state measurement technique

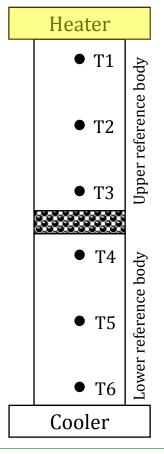
- Measurement of bulk thermal conductivity of low to medium thermally conductive material
- Measurement of thermal interface resistances
- For solid and viscous materials
 - » Substrates (FR4, IMS, LTCC, HTCC etc.)
 - » TIMs (greases, adhesives, gap fillers, films etc.)
 - » Isolation layers (foils, foams etc.)
- Cyclic testing for ageing investigations
 - » Thermal and/or mechanical cycling
- Advanced customized thermal investigations

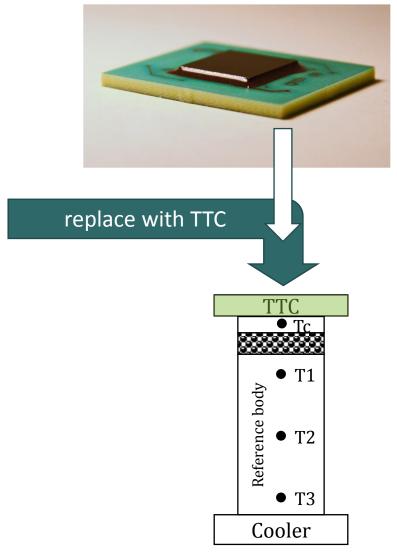
Selection of feasible samples

Selection of metal test heads for characterization

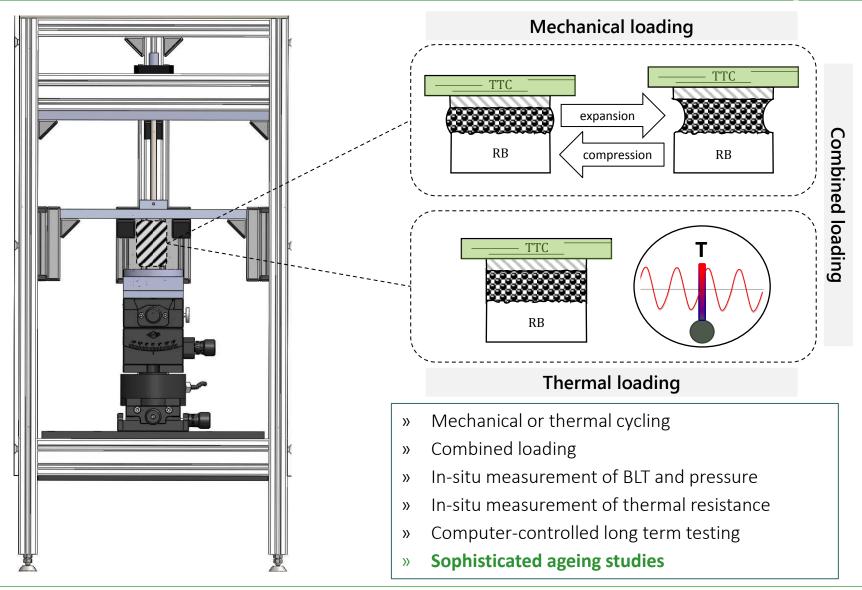
All-round steady-state characterization platform



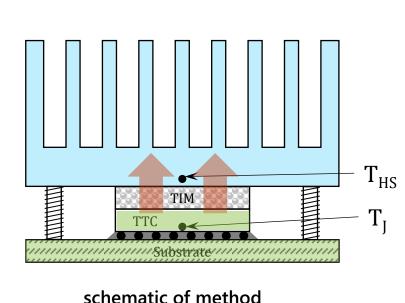


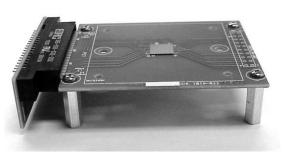

Applications I » TIMA™ Pt. 2

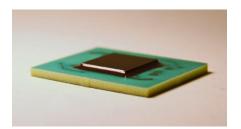
- Method based on ASTM D-5470
 - » Advanced studies with die surface



Applications I » TIMA™ Pt. 3

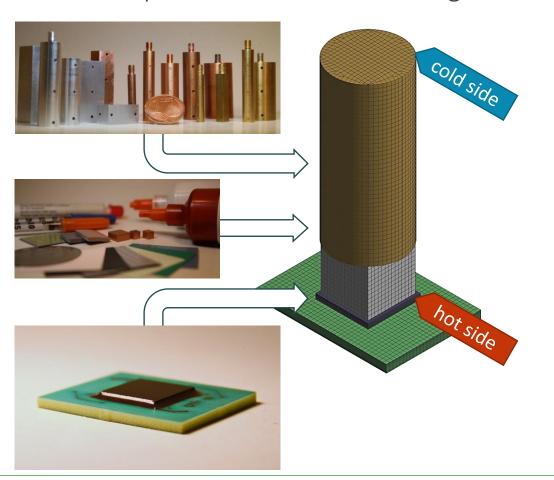


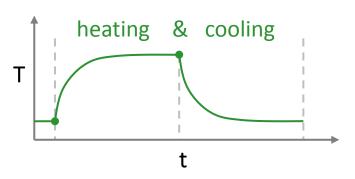


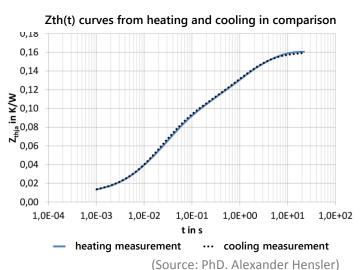

Applications II » Effective thermal resistance

- Implementation of the JEDEC standard JESD51-3
 - » Determination of the effective thermal resistance of TIMs
 - » In-situ and ex-situ investigation of ageing behavior
- Highly compact, affordable and easy to build

$$R_{th} = \frac{T_J - T_{HS}}{\dot{Q}}$$

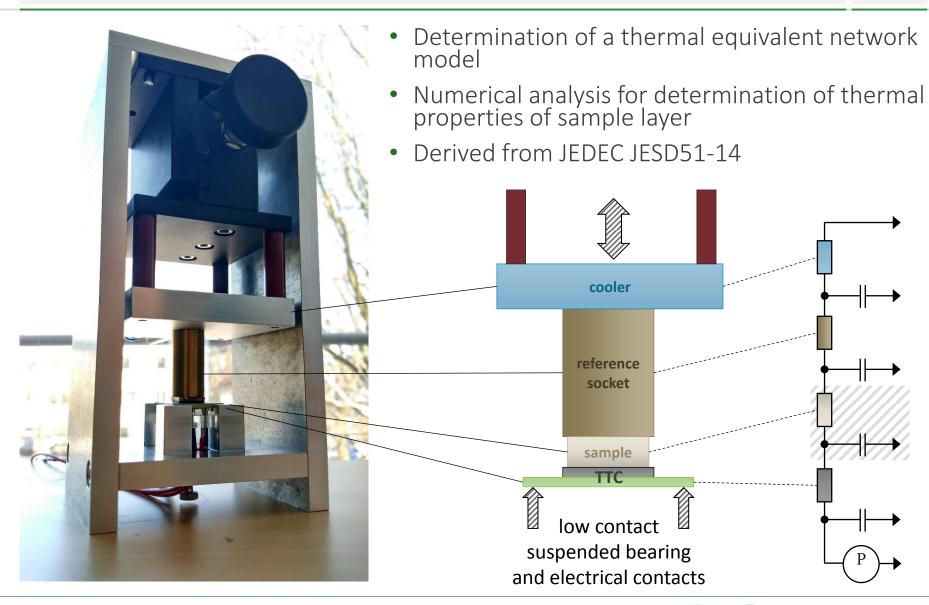

TTV-410X by TEA

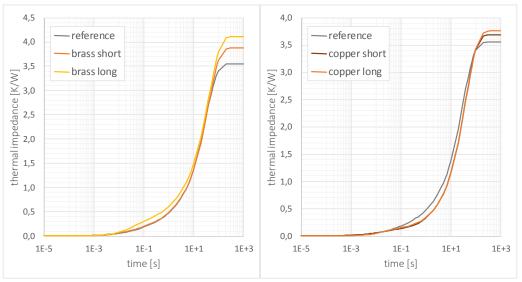

TTV by NANOTEST



Applications III » TransTIMA™ Pt. 1

- Combination of TIMA™ and thermal transient methods
 - » The edge of the TTC: <u>separation of heating and sensing</u> allows for temperature measurement regardless of the power state

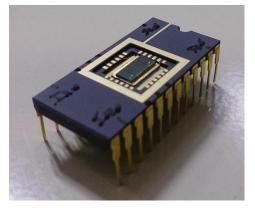


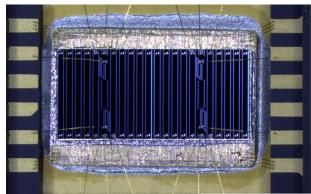


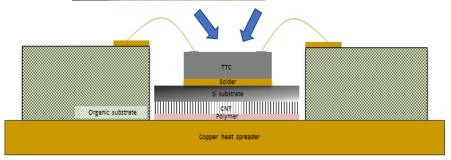
Applications III » TransTIMA™ Pt. 2

Applications III » TransTIMA™ Pt. 3

#	R _{th,J-A} [K/W]
	3,58
	3,88
	4,12

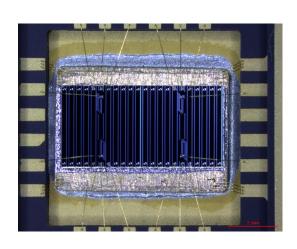

#	R _{th,J-A} [K/W]	
	3,58	
	3,68	
	3,76	

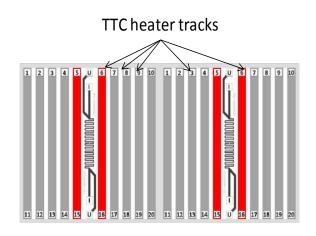

- Metal samples -- evaluation study (published at IMAPS France ATW Thermal, La Rochelle FR 2016)
- Structure function for detailed analysis on multilayer-samples
- » Highly compact and efficient tool for transient thermal characterization of thermal interface materials
- » Directly application related results, determined with direct contact to die surface.

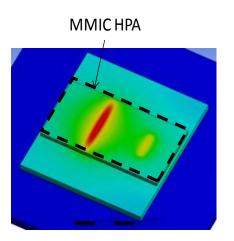


Applications IV » Die Attach Characterization

- Characterization of vertically aligned carbon nanotubes (VACNTs)
- TTC as replacement for the real application target chip
- Used for excitation (heating) and temperature sensing
- Measurement of the transient step response
- Comparison to reference measurement with standard adhesive

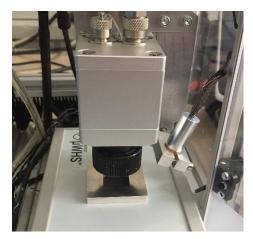


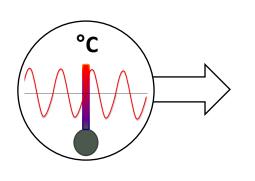




Applications V » Load profiles

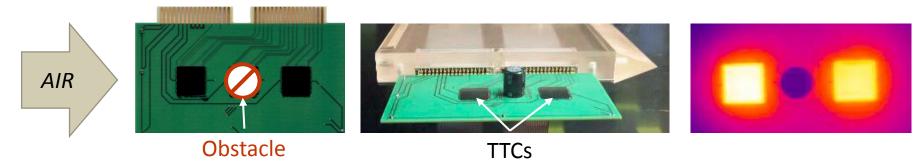
- Separate contacting of heater lanes allows recreation of various custom load profiles
- Heater lanes can be individually contacted and controlled to generate
 - » Custom hot spots
 - » Defined temperature gradients / fields
 - » Application case-specific heat density distributions can be incorporated in testing

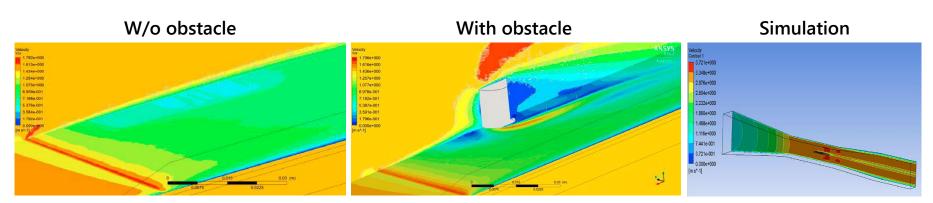




Applications VI » Use as optical reference


- Chip-surface ideal for reference measurements close to application
 - » Coatable with any metal / material of choice
 - » Reflecting (native) or matte (camera paint)
- Multiple purposes
 - » Infrared & thermoreflectance thermography
 - » Controlled and precise temperature reference
 - Homogeneous or temperature gradients
 - » Time-domain for lock-in analysis





Applications VII » Fluidic analysis

- Influence of obstacles in air flow on active air cooling
- Two TTCs in air flow direction with obstacle in between

TTC as both heat source and temperature sensor

Good correlation between simulation and experiment

Conclusion

- Available TTCs did not fully meet our requirements
 - » Very limited availability and/or quality.
- We created a TTC that meets our requirements:
 - » High precision, suited for accurate thermal characterization
 - » Available for different assembly and packaging technologies
 - » Highly configurable and flexible
- Numerous different application examples prove the diverse feasibility and flexibility of these TTCs:
 - » In-situ material and system characterization
 - » May be used for both transient and steady-state analyses
 - » Optical calibration or referencing is practicable
 - » Capable for use in sophisticated analyses and complex studies

Contact Information

Berliner Nanotest und Design GmbH

Volmerstrasse 9B 12489 Berlin Germany

Mohamad Abo Ras, CEO, Co-founder

Email: aboras@nanotest.eu

Tobias von Essen, R&D

Email: vonessen@nanotest.eu

Web: www.nanotest.eu Tel: +49 30 6392 3614

DS&A LLC

Collaborative Innovation Works 11 Chestnut Street Amesbury MA 01913 USA

Dave Saums, Principal

Email: dsaums@dsa-thermal.com

Web: www.dsa-thermal.com

Tel: 1 978 499 4990

