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Outline 

• Motivation 

• Design of the Thermal Test Chip 

• Qualification and Calibration 

• Application examples 
» Material characterization at TIMA™ 

» Material characterization at TransTIMA™ 

» Highly conductive die attach characterization 

» Load profile generation 

» Optical reference heat source 

» Fluidic analysis 

• Conclusion & Outlook 
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Motivation 

• What is a Thermal Test Chip (TTC)? 
» Basic chip for testing and characterization 
» Each consists of: 

• a heat source  
• a temperature sensor 
• contacting pads 

• Why did we create an own Thermal Test Chip? 
» Limited availability and selection of TTCs on the market 
» Available chips do not fulfill requirements: 

• Low power density 
• Inhomogeneous heat dissipation 
• Low temperature accuracy 

» TTCs are the mainly used tool for thermal 
characterization and qualification of materials and 
packages in electronics 

» A gap in the market 
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Design » Requirements 

• Modularity 
» Different chip sizes available to meet most requirements 

• Homogeneity 
» Uniform heater structures for homogeneous heat dissipation  

up to 1 W/mm² 

• Resolution 
» Thermal resolution of temperature sensing up to  ± 0.2 K 
» Spatial resolution of temperature sensing up to  ± 500 µm 

• Reliability 
» Suitable for long-term load cycle testing to > 100,000 cycles 

• Cost-Effectiveness 
» Suitable as consumable rather than as invest 

• Assembly 
» Available for different assembling technologies 

• Metallization 
» Available with different backside metallization 
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Design » Layout 
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• Wafer 
» Standard 150 mm Si wafer 
» Thickness 

• Bulk silicon: 675 µm 
• Oxide coating: 1 µm 

» 1200 chips per wafer 

• Masks 
» Use of only 3 masks for the full process: 

1. Mask for lithography of the temperature sensor and heater structures 
2. Mask to open the vias for contacting the structures 
3. Mask for the deposition of the contact layer metallization 

• The Edge 
» Few masks for the whole process 
» Si wafers in standard size 
» Processing steps with small tolerances 
» Fully modular wafer layout for custom chip sizes 



Design » Wafers 
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Assembling technology Flip Chip Assembly Wirebond Assembly 

Fabrication technology Thin film Thin film 

Wafer diameter 150 mm 150 mm 

Wafer thickness 675 µm 400 µm 

Cell size 3.2 x 3.2 mm² 3.2 x 3.2 mm² 

Cell count 1200 1200 

Heaters per cell 10 resistors (160 Ω each) 10 resistors (160 Ω each) 

Sensors per cell 1 resistor (3 kΩ each @ RT) 1 resistor (3 kΩ each @ RT) 

Backside metallization None Ti/Pt/Au (100 nm each) 

Contact pad Cu pillar (40 µm) & AgSn (30 µm) Al metallization 

Pad size 80 µm 150 µm 

Pad raster 300 µm 300 µm 

Source: advotech.com 



Design » Flip Chip Assembly 
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Wafer dicing Flip-Chipping & Soldering Underfilling 

• Standard semiconductor process with low defect rate 

• Default package for Nanotest applications:  
» Full-area heater and five temperature sensors 

• Highly reliable package that is suited for cycle testing 

 



Temperature Calibration 

• Calibration with Nanotest HK200™ 

• Calibration of 5 sensors simultaneously 

• Four-wire termination 
» 1 mA sensing current 

• Resistance perfectly proportional to the temperature 
» R² > 0.9998 
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T1 8,049 2861 

T2 7,994 2887 

T3 8,013 2878 

T4 8,009 2875 

T5 8,140 2942 

mean 8,041 2889 

sensitivity: 8 Ω/K 

 4X higher sensitivity 

compared to Si diodes 
(@ 1 mA) 



Temperature Homogeneity 

• Homogeneity is of very high importance for TIM characterization: 
» Inhomogeneous heat flow leads 

to faulty thermal analysis results 

• Use of thermal imaging for 
transient modulated technique 

» At steady-state (Q = 0), 
non-homogeneities are not detectable 

• Lock-in thermography  
amplitude image for  
quantification of the heat 
flow distribution 
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NT16-3K is a 4X improvement 
over earlier test die previously  
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Applications I » TIMA™ Pt. 1 
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TIMA™ 

Steady state measurement 

technique 

All-round steady-state characterization platform 

• Measurement of bulk thermal 
conductivity of low to medium 
thermally conductive material 

• Measurement of thermal 
interface resistances 

• For solid and viscous materials 

» Substrates (FR4, IMS, LTCC, 
HTCC etc.) 

» TIMs (greases, adhesives, gap 
fillers, films etc.) 

» Isolation layers (foils, foams etc.) 

• Cyclic testing for ageing 
investigations 

» Thermal and/or mechanical 
cycling 

• Advanced customized thermal 
investigations 

Selection of feasible samples 

Selection of metal test heads for characterization 



Applications I » TIMA™ Pt. 2 
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• Method based on ASTM D-5470 
» Advanced studies with die surface 
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Applications I » TIMA™ Pt. 3 
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» Mechanical or thermal cycling 

» Combined loading 

» In-situ measurement of BLT and pressure 

» In-situ measurement of thermal resistance 

» Computer-controlled long term testing 

» Sophisticated ageing studies 
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Applications II » Effective thermal resistance 

• Implementation of the JEDEC standard JESD51-3 
» Determination of the effective thermal resistance of TIMs 

» In-situ and ex-situ investigation of ageing behavior 

• Highly compact, affordable and easy to build 
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Applications III » TransTIMA™ Pt. 1 
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• Combination of TIMA™ and thermal transient methods 
» The edge of the TTC:  separation of heating and sensing allows for 

temperature measurement regardless of the power state 

 

t 

T 

heating    &   cooling 

(Source: PhD. Alexander Hensler) 

Zth(t) curves from heating and cooling in comparison 

heating measurement cooling measurement 
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Applications III » TransTIMA™ Pt. 2 
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TTC 

low contact 
suspended bearing 

and electrical contacts 
P 

• Determination of a thermal equivalent network 
model 

• Numerical analysis for determination of thermal 
properties of sample layer 

• Derived from JEDEC JESD51-14 

 

 



Applications III » TransTIMA™ Pt. 3 
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• Metal samples --  evaluation study 
(published at IMAPS France ATW 
Thermal,  La Rochelle FR 2016) 

• Structure function for detailed 
analysis on multilayer-samples 

 
» Highly compact and efficient tool for transient thermal characterization of thermal 

interface materials 

» Directly application related results,  determined  with direct contact to die surface. 



Applications IV » Die Attach Characterization 

• Characterization of 
vertically aligned carbon 
nanotubes (VACNTs) 

• TTC as replacement for the 
real application target chip 

• Used for excitation (heating) 
and temperature sensing 

• Measurement of the 
transient step response 

• Comparison to reference 
measurement with standard 
adhesive 
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MMIC HPATTC heater tracks



Applications V » Load profiles 

• Separate contacting of heater lanes allows recreation of 
various custom load profiles 

• Heater lanes can be individually contacted and controlled 
to generate 

» Custom hot spots 
» Defined temperature gradients / fields 
» Application case-specific heat density distributions can be 

incorporated in testing 
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MMIC HPATTC heater tracks



Applications VI » Use as optical reference 
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• Chip-surface ideal for reference 
measurements close to application 

» Coatable with any metal / material of choice 

» Reflecting (native) or matte (camera paint) 

• Multiple purposes 
» Infrared & thermoreflectance thermography 

» Controlled and precise temperature reference 
• Homogeneous or temperature gradients 

» Time-domain for lock-in analysis 



Applications VII » Fluidic analysis 
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• Influence of obstacles in air flow on active air cooling 

• Two TTCs in air flow direction with obstacle in between 

 

 

 

• TTC as both heat source and temperature sensor 

 

 

 

 

• Good correlation between simulation and experiment 
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Conclusion 

• Available TTCs did not fully meet our requirements 
» Very limited availability and/or quality. 

• We created a TTC that meets our requirements: 
» High precision, suited for accurate thermal characterization 

» Available for different assembly and packaging technologies 

» Highly configurable and flexible 

• Numerous different application examples prove the 
diverse feasibility and flexibility of these TTCs: 

» In-situ material and system characterization 

» May be used for both transient and steady-state analyses 

» Optical calibration or referencing is practicable 

» Capable for use in sophisticated analyses and complex studies 
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Berliner Nanotest und Design GmbH 
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12489 Berlin Germany 
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Email:  aboras@nanotest.eu 
Tobias von Essen, R&D 
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Web:   www.nanotest.eu 
Tel:      +49 30 6392 3614 
 
DS&A LLC 
Collaborative Innovation Works 
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Amesbury MA   01913  USA 
 
Dave Saums, Principal 
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